Code No. 16513/CORE

FACULTY OF SCIENCE M. Sc. III - Semester Examination, March / April 2021

Subject: Physics Paper - I: Modern Optics

Time: 2 Hours

PART - A

Max. Marks: 80

Answer any five questions.

 $(5 \times 7 = 35 \text{ Marks})$

- ✓ Describe any four properties of a laser beam
- Mention the various pumping mechanisms in lasers with examples
- 3 Draw the energy level diagram of a carbondioxide molecule and show the laser transitions in a carbon dioxide laser.
- 4 Differentiate between temporal coherence and spatial coherence
- √5 Write a note on Fourier transform hologram
- 6 Write an expression for the Fresnel Diffraction integral and explain each parameter
- Y Explain how a lens performs a fourier transform on an incident light beam
- What is meant by spatial frequency filtering? Explain one application

PART - B

Answer any three questions.

 $(3 \times 15 = 45 \text{ Marks})$

- 9/ Explain the processes that occur when monochromatic light interacts with a two level atomic system. Deduce Einstein coefficients.
- 10 Obtain an expression for population inversion in a three level laser system.
- 11 Explain the construction and working of a Ruby laser, its characteristics and applications.
- With an energy level diagram, explain how an excimer laser is produced. Give examples and applications of excimer lasers.
- 13 What is a Hologram? Explain in detail, the steps of recording and reconstruction of the object in holography.
- 14 Explain how an Off-axis hologram removes the disadvantages of a Gabor hologram.
- 15 Deduce the thickness function for a thin converging lens under paraxial approximation
- 16 (a) Explain various types of lenses and What are the fourier transforming properties of lenses.
 - (b) Explain Phase Matching.

Code No. 16514 / CORE

FACULTY OF SCIENCE M.Sc. III-Semester (CBCS) Examination, March 2021

Sub: Physics

Paper – II: Advanced Solid State Physics

Time: 2 Hours

PART – A

Max.Marks:80

Answer any five questions.

(5x7=35 Marks)

- 2 Define extended, periodic and reduced zone schemes diagrammatically.
 - 3 Explain terms: (i) dielectric polarization (ii) dipole relaxation
 - 4 List the properties of ferroelectric materials.
 - 5 Distinguish between ferromagnetism and anti-ferromagnetism
 - 6 List the application of ferrites.
- Z Explain Meissner effect.
- S Differentiate between type-I and type-II superconductors.

PART - B

Answer any three questions.

(3x15=45 Marks)

- 9 Explain de Hass-Van Alphen effect. Why this method is considered to be a powerful to study Fermi surfaces?
- 10 Explain how Harrison's method is used to construct Fermi surfaces, using extend zone method.
- 11 Explain electronic, ionic and orientation polarisability. Explain the ferroelectric hysteresis nature in detail.
- 12 Obtain Clauses-Mosotti relation and discuss the concept of local field.
- 13 Give an account of Weiss theory of ferromagnetism and describe paramagnetic cooling method.
- 14 Explain Bloch wall and discuss Neel's theory of anti-ferromagnetism in detail.
- 15 Discus London's phenomenological approach made in superconductors. Obtain a relation for London penetration depth.
- J6 Explain BCS theory and write the applications of superconductors.

Code No. 16525 / CORE

FACULTY OF SCIENCE

M.Sc. III-Semester (CBCS) Examination, March/April 2021

Subject: Physics (Specialization: Electronic Instrumentation)

Paper – III : Electronic Instrumentation

Time: 2 Hours

PART - A

Max.Marks:80

Answer any five questions.

(5x7=35 Marks)

- 1 Distinguish between zero, first and second order systems.
- 2 Discuss briefly about various types of errors.
- 3 Draw and explain S/H circuit.
- 4 Explain the voltage to frequency converters.
- 5 Explain briefly the working of noise generator.
- 6 Write a note on audio frequency wave analyzer.
- 7 Describe the working principle of XY-recorder.
- 8 Explain the characteristics of LED.

PART - B

Answer any three questions.

(3x15=45 Marks)

- 9 (a) Obtain an expression for the transfer function of first order instrumentation system.
 - (b) Discuss the response of a first order system to a step input.
- 10 Explain in detail the response of a second order system to an impulse input.
- 11 Explain the construction and working of an isolation amplifier. Mention its merits and demerits.
- 12 Draw the circuit diagram of log and anti-logarithmic amplifier. Obtain an expression for their outputs.
- 13 Describe the construction of a function generator.
- 14 What is harmonic distortion? Define total harmonic distortion.
- 15 Draw the block diagram of vector voltmeter and discuss its working.
- 16 With a neat diagram explain the working of Laser printer.

Code No. 16526/A/ CORE

FACULTY OF SCIENCE M.Sc. III-Semester (CBCS) Examination, July 2021

Subject: Physics (Specialization: Electronic Instrumentation)

Paper - IV : Digital Logic Circuits

Time: 2 Hours

PART - A

Max.Marks:80

Answer any five questions.

(5x7=35 Marks)

- Explain Don't care condition with a combinational logic circuits.
- Explain the designing of combinational logic circuits.
- 3 Describe the clock signals in Flip-flops.
- 4 Draw the diagram of NAND latch with truth table.
- 5 Explain the TTL loading and fan-out characteristics.
- 6 List the applications of the Multiplexers.
- Explain general memory operation.

Answer any three questions.

8 Write some applications of programmable Logic Devices.

PART -

(3x15=45 Marks)

- 9 Describe how Karanaugh Map simplification method is used in the circuit analysis.
- 10 Explain BCD addition and Hexadecimal arithmetic with examples.
- 11 Describe clocked R-S Fiip-riop and clocked J-K Flip-flop with diagrams and truth tables.
- 12 Explain in detail the UP/DOWN counters and pre-settable counters.
- 13 What is Decoder? Describe BCD to 7 segment decoder.
- 14 Explain CMOS logic and writes its characteristics.
- 15 Describe the architecture of the PROM in Programmable Logic Devices.
- 16 How ROMs are classified? Write the applications of the ROM.